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OBJECTIVE

Common circadian-related gene variants associate with increased risk for metabolic
alterations including type 2 diabetes. However, little is known about whether diet and
sleep couldmodify associations between circadian-related variants (CLOCK-rs1801260,
CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs10830963, NR1D1-rs2314339) and
cardiometabolic traits (fasting glucose [FG], HOMA-insulin resistance, BMI, waist cir-
cumference, and HDL-cholesterol) to facilitate personalized recommendations.

RESEARCH DESIGN AND METHODS

We conducted inverse-variance weighted, fixed-effect meta-analyses of results of
adjusted associations and interactions between dietary intake/sleep duration and
selected variants on cardiometabolic traits from 15 cohort studies including up to
28,190 participants of European descent from the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) Consortium.

RESULTS

We observed significant associations between relative macronutrient intakes and
glycemic traits and short sleep duration (<7 h) and higher FG and replicated
known MTNR1B associations with glycemic traits. No interactions were evident
after accounting for multiple comparisons. However, we observed nominally
significant interactions (all P < 0.01) between carbohydrate intake and
MTNR1B-rs1387153 for FG with a 0.003 mmol/L higher FG with each additional
1% carbohydrate intake in the presence of the T allele, between sleep duration
and CRY2-rs11605924 for HDL-cholesterol with a 0.010 mmol/L higher HDL-
cholesterol with each additional hour of sleep in the presence of the A allele,
and between long sleep duration (‡9 h) and MTNR1B-rs1387153 for BMI with a
0.60 kg/m2 higher BMI with long sleep duration in the presence of the T allele
relative to normal sleep duration (‡7 to <9 h).

CONCLUSIONS

Our results suggest that lower carbohydrate intake and normal sleep duration may
ameliorate cardiometabolic abnormalities conferred by common circadian-related
genetic variants. Until further mechanistic examination of the nominally significant
interactions is conducted, recommendations applicable to the general population
regarding dietdspecifically higher carbohydrate and lower fat compositiondand nor-
mal sleep duration should continue to be emphasized among individuals with the
investigated circadian-related gene variants.
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Gene-environment interactions can
identify potential opportunities for
personalized health interventions for
individuals who are genetically suscep-
tible to type 2 diabetes and related
chronic diseases (1). During the past
decade, researchers have examined
lifestyle interventions, particularly
those related to diet, physical activity,
and sleep, for individuals at increased
genetic risk for metabolic alterations
such as type 2 diabetes (2,3). For exam-
ple, dietary changes in carbohydrate
(CHO) and fat intake have been shown
to attenuate a genetic predisposition
to elevated fasting glucose (FG) (4), in-
sulin resistance (5), and type 2 diabetes
(6). Sleep duration has also been as-
sessed as a modifying factor in the as-
sociations between genetics and type 2
diabetes because of the association of
sleep with diet and chronic disease and
its effect on the genetic risk for obesity
(7). Identifying optimal and personal-
ized therapies for the primary pre-
vention of type 2 diabetes through
gene-environment investigations is
critical to public health for a disease
that affects an estimated 29.1 million
Americans (9.3% of the U.S. popula-
tion) (1,8). In addition, because only
10% of the total heritability of type 2
diabetes is accounted for by genetic
variants (9), gene-environment investi-
gations may also reveal novel biological
pathways and genetic loci pertinent to
this disease.

Glucose homeostasis and insulin se-
cretion are among several biological
processes that are controlled by the
circadian biological clock, which is
maintained endogenously through a
transcription-translation feedback loop
composed of clock genes (10). Glycemic
control is mediated through multiple
processes, including circadian regula-
tion of hepatic glucose metabolism
(11,12); secretion of adipokines, such
as leptin and adiponectin (13,14); and
the pancreatic secretion of insulin and
glucagon (15). Experiments in clock
mutant mice showing disrupted glucose
homeostasis, insulin secretion and sen-
sitivity, and other metabolic processes,
along with circadian disruption in
humans (16), emphasize the importance
of circadian control in metabolic control
(15,17).

In support of the link between the
circadian system and glycemic control
in humans are results from genome-
wide association studies (GWAS) of FG
(18,19) and type 2 diabetes (9,20) that
have reported associations with clock
gene CRY2, encoding cryptochrome 2,
and the circadian-related melatonin
receptor 1B gene MTNR1B. In addition,
the circadian locomotor output of clock
genes cycles kaput CLOCK and, more
recently, the nuclear receptor rev-erb-a
NR1D1 have been associated with
related metabolic traits, including lower
circulating concentrations of HDL-
cholesterol (HDL-C) and elevated central

adiposity (21–23). Because metabolic
traits are important predictors of type
2 diabetes, these locimay alsobe relevant
to the pathogenesis of type 2 diabetes
(24). Thus, investigating whether life-
style modificationsdparticularly diet,
for its potent role in entraining circa-
dian clocks in metabolic tissues (25),
and sleep, for its putative effect on
disease risk (7)dattenuate circadian-
related genetic predispositions to
metabolic disruptions may facilitate
the development of personalized rec-
ommendations to improve type 2 dia-
betes prevention strategies.

In cross-sectional meta-analyses of
large population-based cohorts from
the Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE) Con-
sortium,we testedwhether dietary intake
(total CHO, total fat, polyunsaturated fatty
acid [PUFA], monounsaturated fatty acid
[MUFA], and saturated fatty acid [SFA])
and sleep duration (continuous and cat-
egorical) modify the associations be-
tween five common circadian-related
gene variants (CLOCK-rs1801260, CRY2-
rs11605924,MTNR1B-rs1387153,MTNR1B-
rs10830963, and NR1D1-rs2314339) and
the two glycemic traits of FG and HOMA-
insulin resistance (HOMA-IR), as well as
related anthropometric (BMI and waist
circumference) and lipid (HDL-C) traits.
These outcomes are related to cardio-
metabolic disease and have previously
been shown to associate with the se-
lected genetic variants.
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RESEARCH DESIGN AND METHODS

Cohorts
Thepresent cross-sectionalmeta-analyses
include up to 28,190 participants of Eu-
ropean descent from the following 15
cohort studies of the CHARGE Consor-
tium Nutrition Working Group (Supple-
mentary Table 1): Coronary Artery Risk
Development in Young Adults Study
(CARDIA); Corogene Controls; Cardiovas-
cular Health Study (CHS);Dietary, Lifestyle,
and Genetic determinants of Obesity and
Metabolic syndrome (DILGOM); Family
Heart Study (FamHS); Framingham Off-
spring Study (FOS); Genetics of Lipid
Lowering Drugs and Diet Network
(GOLDN); GOYAMALE; Helsinki Birth Co-
hort Study (HBCS); Invecchiare in Chianti
(aging in the Chianti area, InCHIANTI);
Inter99; Multi-Ethnic Study of Athero-
sclerosis (MESA); The Rotterdam Study;
The Hellenic Study of Interactions
between SNPs and Eating in Atheroscle-
rosis Susceptibility (THISEAS); and the
Cardiovascular Risk in Young Finns Study
(YFS). Participants provided written
informed consent, and the study
protocols were approved by local insti-
tutional review boards and/or oversight
committees.

Dietary Assessment
Dietary data were collected via vali-
dated food-frequency questionnaires
(13 cohorts), dietary recall (1 cohort),
and food record (1 cohort) (Supplemen-
tary Table 2). The type of food-frequency
questionnaire used in each cohort dif-
fered slightly to capture the dietary habits
of the population of interest. The present
analysis quantified total CHO intake and
total fat intake as percentages of total
energy intake. Additional analyses used
percentage of energy from specific fatty
acids, including PUFA, MUFA, and SFA.
Total energy intake from protein was
not included in the present analysis be-
cause of the lack of evidence supporting
protein intake in gene-environment in-
teractions (3).

Sleep Assessment
Data on habitual weekday/workday
nighttime sleep duration in hours per
night were obtained from self-reported
responses to questions such as, “How
many hours of sleep do you usually get
at night?” or were calculated from self-
reported weekday/workday bed and
rise times (Supplementary Table 3).

Responses were analyzed as continuous
and categorical variables. Commonly ac-
cepted cutoffs were used to create
three sleep duration categories: short
(,7 h), normal ($7 to ,9 h), and long
($9 h).

Outcome Measurements
Cohort-specific assessment methods for
FG (mmol/L), BMI (kg/m2), waist circum-
ference (cm), and HDL-C (mmol/L) are
described in detail in Supplementary
Table 3. HOMA-IR was estimated from
fasting insulin and FG concentrations,
using the previously validated equation
[HOMA-IR = FG (mmol/L) 3 fasting
insulin (mU/L)/22.5], and was natural
log-transformed to reduce skew before
data analysis.

Genotyping
We selected five single nucleotide poly-
morphisms (SNPs) in circadian-related
genes based on previous reports from
GWAS meta-analysis (CRY2-rs11605924,
MTNR1B-rs10830963), replicated candi-
date gene association studies (NR1D1-
rs2314339), gene-environment interaction
studies, or a combination of these findings
(CLOCK-rs1801260, MTNR1B-rs1387153)
that showed associations with type 2 di-
abetes, FG, and/or BMI (4,9,18–21). SNPs
and/or SNPs in linkage disequilibrium
(r 2 . 0.80; HapMap III release 2 data
set) were previously directly geno-
typed or imputed by participating co-
horts before inclusion in this analysis
(Supplementary Table 4). SNPs were
assessed for quality control: geno-
typed SNPs were excluded on the basis
of low call rate (,95%) and departure
from Hardy-Weinberg equilibrium
(,1E-06), and imputed SNPs were re-
moved on the basis of low imputation
quality (MACH: R2 , 0.3 or IMPUTE:
proper info ,0.4). Not all SNPs were
available in all participating cohorts
(Supplementary Table 5), and there-
fore, total sample sizes for analyses
varied.

Cohort-Specific Analyses
All participating cohort-specific statistical
analyses followed a uniform analysis
plan. First, main associations between di-
etary intake or sleep duration and all out-
comes were estimated with adjustment
for age, sex, BMI (except for BMI out-
come), and study site (in CARDIA, CHS,
FamHS, GOLDN, InCHIANTI, andMESA) us-
ing linear regressionmodels. Second,main

associations between selected SNPs and
all outcomes were investigated by using
linear regression models and an additive
genetic model adjusted for the aforemen-
tioned covariates in addition to family or
population structure (in Corogene Con-
trols, DILGOM, FamHS, FOS, GOLDN,
MESA, The Rotterdam Study, and YFS),
and genotype batch (in FamHS). Third,
for our primary analysis of interest, 175
interactions (7 environmental variables3
5 SNPs 3 5 outcomes) between dietary
intake or sleep duration (continuous and
categorical) and the selected SNPs on all
outcomes were tested by using intake/
sleep duration3SNP cross-product terms
and including main-effect terms in linear
regression models adjusted for the afore-
mentioned covariates. Participants within
each cohort were excluded from the ana-
lysis if they were shift workers, on sleep
medications or antidepressant medi-
cations, reported bedtimes after 5 A.M.

or before 6 P.M., and/or reported sleep
duration,3 or$16 h. For glycemic out-
comes, participants with type 2 diabe-
tes within each cohort were excluded
from main association and interaction
analyses.

Meta-analyses
We conducted inverse-variance
weighted, fixed-effect meta-analyses
using METAL (version released 2011-
03-25) for 1) main associations of die-
tary intake/sleep duration on the
outcomes, 2) main associations of the
selected SNPs on the outcomes, and 3)
interactions between SNPs and dietary
intake/sleep duration on the outcomes.

Heterogeneity across studies was
tested by using Cochran’s Q statistic
and quantified using the I2 statistic. All
association and interaction analyses with
moderate heterogeneity (I2. 30%) were
further assessed for potential sources
of heterogeneity by conducting meta-
regression and sensitivity analyses.
Meta-regression analyses were con-
ducted using the R metafor package
(R version 3.1.0) to assess the effect of
the followingmoderator variables on het-
erogeneity of association/interaction:
geographical location (U.S. vs. northern
Europe vs. Mediterranean), mean age of
cohort (20–64 years vs. 65–80 years),
and total energy intake (,2,000 vs.
$2,000 kcal/day). Sensitivity analyses
assessed the influence of a single co-
hort on the meta-analyzed estimate by
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repeating analyses removing one cohort
study at a time in the association and
interaction analyses. Statistical signifi-
cance for each outcome was defined
at a level of 0.003, based on Bonferroni
correction for 15 total independent in-
teraction tests (3 independent envi-
ronmental variables [percent energy
from CHO, percent energy from total
fat, and sleep duration] 3 5 indepen-
dent SNPs). We performed power cal-
culations using Quanto version 1.2.4
(http://biostats.usc.edu/software) for
NR1D1-rs2314339, which represents
the SNP with the least possible power
(based on lowest minor allele fre-
quency and sample size). At 80% power,
our sample sizemeets the estimated sam-
ple size to detect an interaction effect
between dietary macronutrient intake
(per 1% intake) and SNPs (per effect al-
lele) on FG.

RESULTS

General characteristics of participants
are reported in Table 1. Mean ages
ranged between 32.6 and 70.2 years,
and women comprised 37–62% of par-
ticipants in each cohort, except for
GOYA MALE (all men). Mean BMI ex-
ceeded 25 kg/m2 for all cohorts, and
there were no substantial variations in
waist circumference, FG, HOMA-IR, or
HDL-C among cohorts. Total energy
intake was generally higher in U.S.
cohorts, but relative macronutrient in-
takes were similar across studies and
differed only for MUFA and SFA intakes.
The Mediterranean cohorts (InCHIANTI
and THISEAS) had higher mean MUFA
intake than northern European and
U.S. cohorts (P , 0.0001), and The Rot-
terdam Study reported the highest SFA
intake (P, 0.0001). In addition, the av-
erage habitual weekday/workday sleep
duration was similar across cohorts,
ranging between 6.8 and 8.3 h, the prev-
alence of short sleep duration (,7 h)
ranged between 18.1 and 41.6%, and
long sleep duration ($9 h) ranged be-
tween 4.0 and 11.9%.

Associations of Dietary Intake/Sleep
Duration With Cardiometabolic Traits
After adjustment for age, sex, BMI, and
study site, we identified significant main
associations between dietary intake/
sleep duration with glycemic traits (Sup-
plementary Fig. 1 and Supplementary
Table 6). Each additional 1% of CHO
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intake was associated with 0.007 mmol/L
lower FG (b 6 SE = 20.007 6 0.001
mmol/L, P = 2.7E-29) and a 0.001 lower
HOMA-IR (b 6 SE = 20.001 6 0.0004
[ln], P = 0.002). Each additional 1% of
total fat intake was associated with a
0.01 mmol/L higher FG (b 6 SE =
0.01 6 0.001 mmol/L, P = 8.36E-13)
and a 0.005 higher HOMA-IR (b 6 SE =
0.005 6 0.0005 [ln], P = 2.76E-16). Sim-
ilar trends were evident for MUFA and
SFA intakes: each additional 1% of
MUFA intake was associated with a
0.01 mmol/L higher FG (b 6 SE =
0.01 6 0.001 mmol/L, P = 4.23E-12)
and a 0.01 higher HOMA-IR (b 6 SE =
0.01 6 0.001 [ln], P = 1.12E-13),
whereas each additional 1% of SFA in-
take was associated with a 0.01 mmol/L
higher FG (b 6 SE = 0.01 6 0.001
mmol/L, P = 9.26E-13) and a 0.01 higher
HOMA-IR (b 6 SE = 0.01 6 0.001 [ln],
P = 1.66E-19). However, no associations
were evident for PUFA intake.
When sleep was assessed linearly, we

observed a marginal association be-
tween sleep duration and FG: each ad-
ditional hour of sleep was associated
with 0.01 mmol/L lower FG (b 6 SE =
20.016 0.005 mmol/L, P = 0.05). How-
ever, when sleep was categorical, we
observed a significant association be-
tween short sleep duration (,7 h) and
FG: short sleep duration was associated
with a 0.03 mmol/L higher FG (b6 SE =
0.036 0.01mmol/L, P = 0.01) andwith a
0.45 kg/m2 higher BMI (b6 SE = 0.456
0.09 kg/m2, P , 0.001) relative to nor-
mal sleep duration ($7 to ,9 h). In ad-
dition, long sleep duration ($9 h) was
associated with a 0.33 kg/m2 higher BMI
(b 6 SE = 0.33 6 0.14 kg/m2, P = 0.02)
and a 0.76 cm higher waist circumfer-
ence (b 6 SE = 0.76 6 0.18 cm, P ,
0.001) and was marginally associated
with a higher HOMA-IR (b 6 SE =
0.03 6 0.02 [ln], P = 0.05), relative to
normal sleep duration ($7 to ,9 h).
Additional main associations of dietary

intake and sleep duration on anthropo-
metric and lipid traits are presented in
Supplementary Table 6.

Associations of SNPs With
Cardiometabolic Traits
Sensitivity analyses indicated that sub-
stantial heterogeneity (I2 . 30%) was
introduced by one cohort (GOLDN) for
glycemic trait outcomes; consequently,
GOLDNwas excluded from the association

and interaction meta-analyses for glyce-
mic traits.

Main associations of selected SNPs on
cardiometabolic traits are presented in
Supplementary Table 7. We replicated
previously published associations be-
tween MTNR1B variants and glycemic
traits in the present meta-analysis
(18,19). In short, MTNR1B-rs1387153
was associated with FG (b 6 SE =
0.058 6 0.007 mmol/L per additional T
allele, P = 1.7E-17), whereas MTNR1B-
rs10830963 was associated with FG
(b6 SE = 0.16 0.008 mmol/L per addi-
tional G allele, P = 4.2E-35) and HOMA-
IR (b 6 SE = 0.016 6 0.004 [ln] per
additional G allele, P = 0.004). We did not
replicate previous associations between
CRY2-rs11605924 and FG (P = 0.06)
(18,19). Consistent with previous find-
ings, no associations were observed for
CLOCK-rs1801260 or NR1D1-rs2314339
on glycemic traits. Main associations of
selected SNPs on anthropometric and
lipid traits are presented in Supplemen-
tary Table 7.

Interactions Between Dietary Intake
and Selected SNPs on Cardiometabolic
Traits
Meta-analyzed estimates of the interac-
tions between dietary intake and se-
lected SNPs on cardiometabolic traits
are presented in Table 2. We observed
no interactions at the prespecified
Bonferroni-corrected significance level
of P, 0.003. We observed a nominal in-
teraction (i.e., P , 0.05) between CHO
intake and MTNR1B-rs1387153 for FG
(b 6 SE = 0.003 6 0.001 mmol/L, P =
0.01), which suggests a 0.003 mmol/L
higher FG with each additional 1% of
CHO intake in the presence of the effect
T allele (Supplementary Fig. 2A and Sup-
plementary Fig. 3A). In other words,
although higher CHO intake is associ-
ated with lower FG when evaluated
independently of genotype, the protec-
tive association of a higher CHO intake
was 0.003 mmol/L weaker (per 1% dif-
ference in CHO intake) in the presence of
each additional T allele, implying that the
T allele attenuates the inverse associa-
tion between CHO intake and FG. An-
other nominal interaction was evident
for MUFA intake and the same MTNR1B
variant for FG (b6 SE =20.0076 0.003
mmol/L, P = 0.02), which suggests 0.007
mmol/L lower FG with each additional
1% of MUFA intake in the presence

of the effect T allele (Supplementary
Fig. 2B). In addition, a nominal interac-
tionwas present between total fat intake
and NR1D1-rs2314339 on HOMA-IR (b6
SE = 0.0024 6 0.001 [ln], P = 0.04) (Sup-
plementary Fig. 2C), suggesting a 0.0024
higher HOMA-IR with each additional 1%
of total fat intake in the presence of the
effect T allele.

For anthropometric and lipid traits,
we observed nominal interactions (i.e.,
P , 0.05), including that between SFA
intake and NR1D1-rs2314339 for BMI
(b 6 SE = 0.005 6 0.002 kg/m2, P =
0.01); the interaction suggests a 0.005
kg/m2 higher BMI with each additional
1% of SFA intake in the presence of the
effect T allele (Supplementary Fig. 1D).

Interactions Between Sleep Duration
and Selected SNPs on
Cardiometabolic Traits
Meta-analyzed estimates of the interac-
tions between sleep duration (continu-
ous and categorical) and selected SNPs
on cardiometabolic traits are presented
in Table 3. We observed no interactions
at the prespecified Bonferroni-corrected
significance level of P, 0.003. A nominal
interaction was evident between sleep
duration and CRY2-rs11605924 for HDL-C
(b 6 SE = 0.010 6 0.004 mmol/L, P =
0.005), suggesting a 0.010 mmol/L higher
HDL-C with each additional hour of sleep
in the presence of the effect A allele
(Supplementary Fig. 2E and Supplemen-
tary Fig. 3B). That is, in the presence of
each additional A allele, the protective
association of higher sleep duration on
HDL-Cwas 0.01mmol/L stronger (per 1 h
of additional sleep), such that the A allele
appears to strengthen the positive asso-
ciation observed with longer sleep dura-
tion. No interactions were evident
between categories of sleep duration
and this variant for HDL-C (short sleep
duration, P = 0.15; long sleep duration,
P = 0.21).

Finally, we observed a nominal inter-
action between short sleep duration
(,7 h) and MTNR1B-rs1387153 for
BMI (b 6 SE = 0.25 6 0.12 kg/m2, P =
0.04) (Supplementary Fig. 2F) and a
stronger interaction between long sleep
duration ($9 h) and the same variant for
BMI (b 6 SE = 0.60 6 0.20 kg/m2, P =
0.003) (Supplementary Fig. 2G); these
interactions suggest 0.25 and 0.60
kg/m2 higher BMIs with short and long
sleep durations, respectively, in the
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presence of the effect T allele, relative
to normal sleep duration ($7 to ,9 h).
Results from meta-regressions and

sensitivity analyses did not substan-
tively (P . 0.05) affect association or
interaction results, neither did they re-
veal any clear sources of heterogeneity
between dietary intake/sleep duration
on glycemic, anthropometric, or lipid
traits (results not shown).

CONCLUSIONS

Our meta-analyses of 15 cohorts did not
identify statistically significant gene-
environment interactions between
modifiable lifestyle factors (relative
CHO and fat intakes and sleep duration)
and common circadian-related gene
variants on glycemic and related meta-
bolic traits. However, the observed
nominally significant interactions sug-
gest that lower CHO intake and normal
sleep duration may ameliorate cardio-
metabolic abnormalities conferred by
the investigated variants. Until further
examination of these interactions is
conducted, recommendations should
continue to emphasize favorable life-
style behaviors applicable to the gen-
eral population, namely, maintaining a
healthy diet and obtaining sufficient
sleep ($7 to ,9 h) for reducing the
risk of metabolic disorders associated
with these variants.
The dietary intake associations we ob-

served suggest that diets with a higher
percentage of total energy intake from
CHO and a lower percentage of total en-
ergy intake from total fat, MUFA, and
SFA are associated with lower FG. The
FG-raising associations of MUFA and
SFA intakes observed in the current
study are twice the magnitude of the
FG-lowering effect of CHO intake, em-
phasizing the importance of limiting fat
intake and in line with current dietary
recommendations for individuals with
diabetes (26). The similar associations
of MUFA and SFA on FG may be partly
driven by the strong correlation be-
tween the two macronutrients in some
cohorts rather than the intake of each
dietary component independently. De-
spite not taking CHO quality into ac-
count, our observations that diets
higher in relative CHO intake are associ-
ated with lower FG are consistent with
results from meta-analyses for whole
grains (27). Furthermore, the associa-
tion observed between short sleep
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duration (,7 h) and higher FG supports
previously reported associations in sin-
gle cohorts (28) and supports previously
reported associations between short
sleep duration and type 2 diabetes (7).
As such, lifestyle recommendations
should include dietary modifications re-
lated to higher CHO and lower fat com-
position and achieving normal sleep
durations ($7 to ,9 h).
Our evaluation of gene-environment

interactions suggest novel putative inter-
actions that fell short of our Bonferroni-
corrected cut point but are supported by
biological plausibility and may be impor-
tant for understanding the etiology of
type 2 diabetes. The strongest nominal
interaction for glycemic traits was an in-
teraction of CHO intake and theMTNR1B-
rs1387153 variant on FG, which suggests
that every 1% increase in CHO intake ex-
acerbates the FG-raising effect of the T
allele that interacts similarly with CHO
as another clock variant in CRY1 (5). Along
with other nominal interactions observed
for MTNR1B-rs1387153, these findings
suggest lower CHO and higher MUFA in-
takes for lower FG among those with the
effect T allele. The high frequency of the
effect T allele among individuals of Euro-
pean descent (minor allele frequency =
0.28) and the consistency of the
rs1387153-FG association across dif-
ferent ethnicities (29) warrant further
investigation of this interaction and
examination of the potential role of
CHO quality in the FG-raising effect of
the T allele. These nominal findings, in
conjunction with confirmed associations
between two common MTNR1B variants
and FG of effect sizes similar to those re-
ported earlier (18,30), indicate that con-
tinuing efforts to identify lifestyle
modifications that offset this genetic risk
should remain an important area of active
research. Consistent with previous find-
ings, no interactions were evident be-
tween sleep duration and the selected
variants on glycemic traits (7).
Our previous work suggests that var-

iants identified through GWAS or candi-
date gene association studies for type 2
diabetes may show gene-environment
interactions for related metabolic traits
beyond glycemic traits (3). We identified
three nominal interactions that are sup-
ported by previous reports and biologi-
cal plausibility. The first is a nominal
interaction between SFA intake and
NR1D1-rs2314339 on BMI. The obesity-

associated NR1D1 gene encodes the nu-
clear receptor rev-erb-a, which plays a
critical role in metabolism and was re-
ported to respond to dietary MUFA for
the outcome of BMI (21,31,32). The sec-
ond is a nominal interaction between
FG-associated CRY2-rs11605924 and
sleep duration for HDL-C.We observed a
positive association between HDL-C and
sleep only when considered in the con-
text of CRY2, a clock gene that inhibits
CLOCK:BMAL1-mediated transcription
of genes involved in lipid metabolism
(33). Supporting the circadian control
of HDL-C are results from the Global
Lipids Genetics Consortium GWAS for
HDL-C for this CRY2 variant (b 6 SE =
0.00046 0.0001 mmol/L per additional
A allele, P , 0.001) (34), which suggest
marginal associations between CRY2
and HDL-C (Supplementary Fig. 4). The
CRY2 variant is in linkage disequilibrium
with rs6843722 (r2 = 1.00 in the 1000
Genomes Project data set), a CRY2 in-
tronic variant that was shown to abolish
the upregulation of CRY2 expression in
human peripheral blood mononuclear
cells after sleep restriction and has func-
tional evidence to affect transcriptional
regulation of CCCTC-binding factor and
glucocorticoid receptor, two transcrip-
tion factors associated with HDL-C
(35–37). Therefore, it is possible that
short sleep duration results in differen-
ces in CRY2 expression, influencing CRY2
control of downstream pathways,
namely HDL-C. Finally, we observed
nominal interactions between short
and long sleep duration, both of which
are associated with higher BMI, and
MTNR1B-rs1387153 on BMI, suggesting
even higher BMI with short and long
sleep duration among carriers of the ef-
fect T allele. This interaction provides
additional support for the potential
role of sleep duration in modifying the
associations between circadian-related
genetic variants and cardiometabolic
outcomes (38) and the importance of
normal sleep duration ($7 to ,9 h)
for optimal health.

The strengths of the present observa-
tional study from 15 cohorts include a
large sample size necessary to detect
gene-environment interactions. Our col-
laborative approach enabled us to stan-
dardize our analytic approach across
cohorts, and despite the wide range of
cohorts included in the study, we ob-
served little evidence of heterogeneity

in our overall analysis. However the
present investigation also has limita-
tions. The reported findings are limited
to individuals of European descent, and
exploring the interaction in other popu-
lations is warranted considering replica-
tion of the SNP associations in different
ethnicities (29,39).

Our use of self-reported dietary in-
take and sleep duration was susceptible
to reporting bias, and the use of differ-
ent assessment tools across cohorts
could have increased measurement er-
ror, biasing our results toward the null
(40). In addition, we failed to replicate a
previously reported significant associa-
tion between CRY2 variant and FG, al-
though we observed an effect size
similar to that of the discovery GWAS
of up to 46,000 individuals (18); it is pos-
sible our sample size was too small to
replicate the significant associations.
Although we have selected circadian-
related gene variants showing strong as-
sociations with metabolic traits from
GWAS and candidate-gene studies, it is
possible that interactions might be
observable for other circadian-related
variants.

Lastly, these cross-sectional meta-
analyses of observational studies can
only lead us toward hypotheses rather
than demonstrate the temporal rela-
tionships or causal pathways linking
clock genes, diet, or sleep, with glyce-
mic, anthropometric, and lipid traits.
Other studies are required to establish
these mechanistic links, including stud-
ies of genetic modification of the effects
of experimental changes in diet compo-
sition or sleep duration.

Our findings contribute to the under-
standing of how lifestyle can reduce the
risk of type 2 diabetes and cardiometa-
bolic disorders in genetically susceptible
individuals. Results from the present
large observational study from 15 co-
horts suggest the potential presence of
selected common circadian-related
gene-environment interactions on met-
abolic traits. The nominal interaction
between CHO intake and the MTNR1B
variant on FG, suggesting that CHO in-
take could exacerbate the FG-raising
effects of this well-studied MTNR1B
variant, the evidence supporting the
role for CRY2 in HDL-C control and its
responsiveness to sleep duration, and
the interaction between long sleep du-
ration and MTNR1B variant on BMI,
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suggesting that the association between
long sleep duration and higher BMI is
exacerbated among carriers of the
MTNR1B variant, are interesting and
merit further study. Mechanistic exami-
nations of the novel nominal interac-
tions and further investigations in
larger cohorts are necessary before
personalized recommendations are
framed for individuals at genetic risk
for metabolic disruption. Moreover,
the observed associations between
dietdspecifically, higher CHO and
lower fat compositiondand normal
sleep duration ($7 to ,9 h) on glyce-
mic traitsdparticularly FGdsuggest
that emphasis should be placed on
these modifiable lifestyle factors to
offset the growing prevalence of type
2 diabetes and cardiovascular disease.

Funding. Infrastructure for the CHARGE
Consortium is supported in part by the Na-
tional Heart, Lung, and Blood Institute grant
HHSN268200800007C. Support was provided
by the U.S. Department of Agriculture, under
agreement no. 58-1950-0-014, American Heart
Association (grant 14BGIA18740011), Academy
of Finland (grant 117787), Italian Ministry of
Health (grant ICS110.1/RF97.71), National In-
stitute of Diabetes and Digestive and Kidney
Diseases (grant DK063491), National Center
for Advancing Translational Sciences (grant
UL1TR000124). C.E.S. is supported by K08-HL-
112845-01. F.A.J.L.S. was supported in part by
National Institutes of Health grants R21-DK-
089378 and R01-HL-094806. Cohort-specific
sources of support and acknowledgments are
presented in Supplementary Table 1. Any opin-
ions, findings, conclusions, or recommendations
expressed in this publication are those of the
authors and do not necessarily reflect the view
of the U.S. Department of Agriculture.
Duality of Interest. No potential conflicts of
interest relevant to this article were reported.
Author Contributions. H.S.D., C.E.S., T.T.,
M.G., D.J.G., F.A.J.L.S., and J.M.O. designed
the study. H.S.D., J.L.F., T.T., T.M.B., L.K.,
M.K.W., A.C.F.-W., T.S.A., M.-M.P., A.J., T.M.,
I.P.K., and V.M. conducted research and con-
tributed to statistical analyses. H.S.D., C.E.S.,
M.G., D.J.G., A.H., P.F.J., S.L.-F., F.A.J.L.S., and
J.M.O. interpreted data. H.S.D., J.L.F., C.E.S., T.T.,
M.G., D.J.G., A.H., P.F.J., J.C.K.-d.J., S.L.-F., F.A.J.L.S.,
and J.M.O. wrote the manuscript. All authors
read and approved the final version of the
manuscript. H.S.D. is the guarantor of this work
and, as such, had full access to all the data in the
study and takes responsibility for the integrity of
the data and the accuracy of the data analysis.
Prior Presentation. Preliminary results were
presented at the 78th Scientific Sessions and
Annual Meeting of the American Society for
Nutrition in conjunction with Experimental Bi-
ology 2014, San Diego, CA, 26–30 April 2014, and
at the 2014 Society for Research on Biological
RhythmsMeeting, Big Sky, MT, 14–18 June 2014.

Appendix

Hassan S. Dashti, PhD, Nutrition and Genomics
Laboratory, Jean Mayer U.S. Department of
Agriculture Human Nutrition Research Center
on Aging at Tufts University, Boston, MA; Jack L.
Follis, PhD, Department of Mathematics, Com-
puter Science, and Cooperative Engineering,
University of St. Thomas, Houston, TX; Caren
E. Smith, MS, DVM, Nutrition and Genomics
Laboratory, Jean Mayer U.S. Department of
Agriculture Human Nutrition Research Center
on Aging at Tufts University, Boston, MA;
Toshiko Tanaka, PhD, Translational Gerontology
Branch, National Institute on Aging, Baltimore,
MD; Marta Garaulet, PhD, Department of
Physiology, University of Murcia, Murcia, Spain;
Daniel J. Gottlieb, MD, MPH, Division of Sleep
and Circadian Disorders, Brigham and Women’s
Hospital, Boston, MA, Division of Sleep Medi-
cine, Harvard Medical School, Boston, MA, and
Sleep Disorders Center, VA Boston Healthcare
System, Boston, MA; Adela Hruby, PhD, MPH,
Department of Nutrition, Harvard School of
Public Health, Boston, MA; Paul F. Jacques,
ScD, Nutritional Epidemiology Laboratory, Jean
Mayer U.S. Department of Agriculture Human
Nutrition Research Center on Aging at Tufts Uni-
versity, Boston, MA; Jessica C. Kiefte-de Jong,
RD, PhD, Department of Epidemiology, Erasmus
Medical Center, Rotterdam, the Netherlands,
and Global Public Health, Leiden University Col-
lege, The Hague, the Netherlands; Stefania
Lamon-Fava, MD, PhD, Cardiovascular Nutrition
Laboratory, Jean Mayer U.S. Department of Ag-
riculture Human Nutrition Research Center on
Aging at Tufts University, Boston,MA; Frank A.J.L.
Scheer, PhD, Division of Sleep and Circadian
Disorders, Brigham and Women’s Hospital, Bos-
ton, MA, and Division of Sleep Medicine, Har-
vard Medical School, Boston, MA; Traci M.
Bartz, MS, Cardiovascular Health Research
Unit, Department of Medicine, University of
Washington, Seattle, WA, and Department of
Biostatistics, University ofWashington, Seattle,
WA; Leena Kovanen, MS, Department of Mental
Health and Substance Abuse Services, National
Institute for Health and Welfare (THL), Helsinki,
Finland; Mary K. Wojczynski, PhD, Department
of Genetics, Washington University School of
Medicine, St. Louis, MO; Alexis C. Frazier-
Wood, PhD, U.S. Department of Agriculture/Ag-
ricultural Research Service Children’s Nutrition
Research Center, Department of Pediatrics, Bay-
lor College of Medicine, Houston, TX; Tarunveer
S. Ahluwalia, PhD, The Novo Nordisk Foundation
Centre for Basic Metabolic Research, Section of
Metabolic Genetics, Faculty of Health and Med-
ical Sciences, University of Copenhagen, Copen-
hagen, Denmark, and Copenhagen Prospective
Studies on Asthma in Childhood, Faculty of Health
and Medical Sciences, University of Copenha-
gen, Copenhagen, Denmark, and Danish Pedi-
atric Asthma Centre, Gentofte Hospital, The
Capital Region, Copenhagen, Denmark; Mia-
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Greece; Vera Mikkilä, PhD, Department of
Food and Environmental Sciences, Division of
Nutrition, University of Helsinki, Helsinki, Fin-
land, and Research Centre of Applied and Pre-
ventive Cardiovascular Medicine, University of
Turku, Turku, Finland; Rozenn N. Lemaitre, PhD,
MPH, Cardiovascular Health Research Unit, De-
partment of Medicine, University of Washing-
ton, Seattle, WA; Timo Partonen, MD, PhD,
Department of Mental Health and Substance
Abuse Services, National Institute for Health
and Welfare (THL), Helsinki, Finland; Tapani
Ebeling, MD, PhD, Oulu University Hospital, De-
partment of Internal Medicine, Division of Endo-
crinology, Oulu, Finland; Paul N. Hopkins, MD,
MSPH, School of Medicine, University of Utah,
Salt Lake City, UT; Lavinia Paternoster, PhD,MRC
Integrative Epidemiology Unit, School of Social
and Community Medicine, University of Bristol,
Bristol, U.K.; Jari Lahti, PhD, Institute of Behav-
ioural Sciences, University of Helsinki, Helsinki,
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